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Abstract 

The problem of electromagnetic (EM) scattering from an aperture backed by 

a rectangular cavity recessed in a 3D conducting body is analyzed using the coupled field 

integral equation approach. Using the free-space Green’s function, EM fields scattered out- 

side the cavity are determined in terms of 1) an equivalent electric surface current density 

flowing on the 3D conducting surface of the object including the cavity aperture and 2) an 

equivalent magnetic surface current density flowing over the aperture only. The EM fields 

inside the cavity are determined using the waveguide modal expansion functions. Making 

the total tangential electric and magnetic fields across the aperture continuous and subjecting 

the total tangential electric field on the outer conducting 3D surface of the object to zero, a set 

of coupled integral equations is obtained. The equivalent electric and magnetic surface cur- 

rents are then obtained by solving the coupled integral equation using the Method of 

Moments (MOM). The numerical results on scattering from rectangular cavities embedded 

in various 3-D objects are compared with the results obtained by other numerical techniques. 

1. INTRODUCTION 

Electromagnetic scattering characteristic of metallic cavities is useful in studying 

radar cross section and electromagnetic penetration properties of objects consisting of these 

cavities as substructures. A large amount of analytical work has been done to characterize these 

cavity structures. A few references, but not a complete list, are given in [l- 81. However, in 

these and similar work, it is assumed that the aperture backed by a cavity is in an infinite flat 

ground plane. For a characterization of an aperture formed by a cavity recessed in a finite gound 

plane or no ground plane, the asymptotic techniques described in [9- 111 may be used. However, 
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these asymptotic techniques are applicable when the frequency is high or when the cavities are 

large in size compared to the operating wavelength. For cavities with size comparable with a 

wavelength, a rigorous integral equation formulation has been used to analyze cylindrical circular 

cavities [12-131. However, the approach described in [12-131 uses entire domain expansion 

functions to represent surface current density and hence is limited to only cylindrical circular 

cylinders. A need, therefore, exists to develop general analytical tools to detennine low 

frequency electromagnetic characteristics of open-ended waveguide cavities without a flang or 

recessed in 3D counducting surface. 

In this paper the problem of EM scattering of plane waves by a cylindrical cavity 

recessed in a 3D metallic object is studied. Using the equivalence principle, the electromagnetic 

field scattered outside the object is determined using free space Green’s function and the 

equivalent electric and magnetic surface currents assumed to be present on the outer surface of the 

object. The equivalent electric surface current is assumed to be flowing over the complete 3D 

surface including the aperture and the equivalent magnetic surface current is assumed to be 

flowing over only aperture. The field inside the cavity are obtained using waveguide modal 

expansion functions. Making the total tangential electric and magnetic fields across the aperture 

continuous and the total tangential electric field zero over the conducting surface only, a set of 

coupled integral equations is obtained. Expanding the surface currents in triangular subdomain 

. functions [ 141 and using the Method of Moments, the coupled integral equations are reduced to 

algebric equations which are solved for the surface current densities. From the surface currents 

the radar cross sections of these cavities recessed in an arbitrarily shaped conducting objects are 

determined. For future reference, this method is refered to as Modal Expansion and Method of 

Moments ( ME-MOM). 
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The remainder of report is organized as follows. The formulation of the problem in 

terms of coupled integral equations using surface equivalence principle is developed in section 2. 

Numerical results on radar cross section of open-ended rectangular cavities recessed in a 

rectangular and finite circular cylinder are presented in section 3. Comparison of the numerical 

results obtained by the present method with other numerical techniques is also presented in 

section 3. The advantages and limitations of the present formulation are discussed in section 4. 

2. THEORY 

Consider a time harmonic electromagnetic plane wave incident on a 3D conducting 

object with an aperture backed by a rectangular cavity as shown in figure 1. The cavity is formed 

by a shorting plate at z = -L. To facilitate the solution of the problem, the equivalence principle is 

applied by using the equivalent surface currents as shown in figure 2. For determining the fields 

> 
outside the cavity (exterior problem), we consider the equivalent currents j and &a radiating in 

free space. The electromagnetic field inside the cavity ( interior problem ) is obtained using 

modal expansion. 

2.1 Interior Problem: 

The transverse components of fields inside the cavity may be obtained using the 

procedure given in [l5]. Expressing the transverse electric and magnetic fields in terms 

of vector modal functions and satisfymg the boundary conditions, the fields inside the 

cavity may be written as 
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2 2 where yp is the propagation constant, equal to ,,/- , k = kOE,p,, ( E, and pr 

are relative permittivity and permeability of medium inside the cavity ), 

admittance, 
> 3 +  
j l  A = 2 x H t ,  Ht being the tangential magnetic 

ep (x ,  y )  = hp (x ,  y )  x 2 , 2  being the unit vector along the z-axis. 

Yp is the modal 

e p ( x , y )  and h p ( x , y )  are the vector modal functions as defined in [15], 

and 

+ + 

field over the aperture, 
+ + 

If the 3D surface is divided into triangular subdomains, the electric current over 

the surface of the 3D object including the aperture may be expressed in terms of 

triangular basis functions as E141 
N 

n = l  

th + 
where Tn is the amplitude of electric current normal to the n edge, B n  (P)  is the 

edge, and N is the number of non-boundary edges on the th vector basis fuction associated with n 

surface of the object. The expression for basis function is given by [ 141 

2 A -  

when 

when 

+ 
r' in 

+ 
r' in 

(4) 

+ where Dn+ and D i  are the two triangles with the nth common edge, A and A -  are 
+ + + 

the areas of D, and D, triangles, respectively, and rl and r2 are position vectors of vertices 

th opposite the the n common edge of Dn+ and D i  triangles, respectively. Likewise the 

magnetic current over the aperture may be written as 
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m =  I 

where rm is amplitude of magnetic current normal to the mth edge, and M is the number 

of non-boudary edges over the aperture. Substituting (3) in equations (1) and (2), the total fields 

inside the cavity are obtained as 

2.2 Electromagnetic Field in Exterior Part: 

In the exterior part, the total electromagnetic field is obtained by superposing the 

> 
scattered field due to j and & , and the incident field. 

2.2.1 Incident Field: 

The incident field with time variation ejor may be written as 
+ >  + -jk; r 

Ein = ( biEei + + i ~ + ) e  (8) 

3 9 
where ki = -ko [?Cos (@i) Sin ( ei) + f S i n  (Qi) Sin (e,) + &Cos ( O i )  ] , Y = ?x + fy  + 22, 

E,; = lE4 Cos (a,) , and E+i = lE4 Sin (a,) , and k, being the free-space wave number. With 

reference to figure 1, a, = 0 corresponds to H-polarization anda, = 90 corresponds to E- 

polarization. 

written, respectively, as 

3 3 

0 

From equation (8), the x-, y-, and z-components of the incident field may be 

Exi = Ee;COS (Eli) Cos ( @i) - Egisin ( qi) (9) 
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EYi = EeiCOS ( ei) Sin (q i )  + E 4 i C ~ ~  (qi)  

Ezi = -EeiSin (ei) 

The corresponding magnetic field components are obtained through 

where qo is the free-space impedance. The incident field with Eei f 0 and E+i = 0 is called 

H-polarized wave and Eei = 0 and E$j f 0 is called the E-polarized wave. 

2.2.2 Scattered Field: 

> 
The scattered field outside the cavity due to j and za may be obtained through 

vector electric and magnetic potentials as 

1 +  SS[>) = -vxA 
PO 

where the electric and magnetic vector potentials are given by 
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, and p,, are the permittivity and permeability, respectively, of free-space, and f and 

> are the coordinates of the field and source points, respectively. Using equations (3) 

and (5), the total scattered electric and magnetic fields may be written as 

where N is total number of non-boundary edges over the 3D body including the aperture 

+ + area, and M is total number of non-boundary edges over the aperture area only. An and Fm 

> appearing in (1 9) and (20) are obtained from equations (17) and (1 S), respectively, by replacing j 

+ + 
by B n  in (17) and &a by B m  in (18). 

2.3 Coupled Integral Equations: 

Making the total tangential fields across the aperture continuous and the total 

tangential electric field on the conducting surface of the object to zero we get the following 

coupled integral 
N 

N 

equations: 
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1 

The integral equations given in (21) and (22) may be reduced to a set of algebric equations 

+ 
by application of the Method of Moments. By selecting Bnl with n' =1,2, ... N as testing functions 

+ 
for equation (21) and Bm* with m'=1,2 .... M as testing functions for the equation (22), the 

application of the Method of Moments results in the following matrix equation: 

The elements of matrices [d , [d , [d , and [d are given by 
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The elements of column matrices [d and [~ are given by 

In evaluating numerical values of expressions (24)-(28), numerical integration over 

the triangles are perfonned using thirteen point gauss quadrature formula 1161. For evaluation of 

self terms; i.e., when n = n' or m = m' , closed form expressions for these expressions given in 

1.171 are used. The unknown electric and magnetic current amplitudes obtained after solving the 

matrix equation (23) can be used to detennine scattered far field using expression (19) and (20). 

2.4 Scattered Far Field: 

Using the far field approximation, the scattered electric far field may be obtained from 

equation (19) as 
N M 

Ese = - Tn - @Ane - T,Jko. Fmo 
n =  1 m = l  

N M 

n = l  m = l  
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The copolarized radar cross section patterns of an aperture backed by a cavity in a 3D conducting 

surface can be obtained from .. 
21Ese12 c,, = lim 4xr - 

r+oJ 

for H-polarized incidence and 

cqq = lim4n;r - 
r + =  

for E-polarized incidence. The cross-polarized radar cross section pattern is obtained from 

(33) 

(34) 
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3. CODE ~ P L E ~ N T A T I O N  

Variable 

*.MOD 

output file name 

The coupled field integral equation approach to solve the problem of scattering from a 

rectangular waveguide embedded in a 3D conducting surface has been implemented through a 

code named scatt-reap-recav-3d (scattering from s tangular  a+pxture backed by a stangular 

Description 

Name of input file containing nodes and element infor- 
mation 

Name of output file where output is stored 

- a i t y  embedded in a &conducting object). 

For running the scatt-reap-recav-3d code, the given geometry is modelled using 

COSMOSN. In using COSMOS/M, it is assumed that user is familiar with operation of 

COSMOSN. All dimensions of 3D surface and rectangular cavity are normalized with respect to 

the operating wavelength. 

The input variables must be defined in a file called *.in before running scatt-reap-recuv-3d 

ihigher 

ite, itm 

alpha 

A sample of *.in is given in Table 1. 

an integer, if zero only dominant mode in the cavity is 
considered. It also skips next line if " ihigher " is zero 

integers, read only if " ihigher" is not zero. ite is number 
of T.E modes and itm is number of TM modes to be con- 
sidered in the cavity 

0 for H-polarization 
90 for E-polarization 

aa,bb x- and y-dimensions of rectangular cavity in wavelength 

al0 length of cavity in wavelength 
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Table 1: Description ofl' .in file 

die, emie complex relative permittivity and permeability of 
medium inside the cavity 

To demonstrate use of the code, the following examples are considered in this report 

1) rectangular cavity without a ground plane 

2) rectangular cavity embedded in a conducting cube 

3) rectangular cavity embedded at the end of finite circular cylinder 

4) rectangular cavity embedded in the curve surface of finite circular cylinder 

3.1 EXAMPLE 1 

To illustrate use of variables defined in Table I, a rectangular cavity shown in figure 3 is 

taken as an example. To generate *.MOD file for the geometry of figure 3 ,&ur&.SSfile given 

in Table 1.1 is first run with COSMOSN. The *.MOD file thus generated is named as 

&urd.MOz>. The&urd.infile used for running the scatt_reu.~reuzv_36code is shown in Table 1.2 

and a sample output of scatt_reap_recau_36 shown in Table 1.3. 

Table 1.1 Listing of&urd.= 

C* COSMOSN Geostar V1.70 
C* Problem : cube 
C" 
PT 1 0 0 0  
pT 2 -0.15 -0.15 0 
PT 3 0.15 -0.15 0 

Date : 11-29-94 Time : 8:47: 4 

pT4 0.15 0.15 0 
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PT 5 -0.15 0.15 0 
PT 6 -0.15 -0.15 -0.2 
PT 7 0.15 -0.15 -0.2 
Pl” 8 0.15 0.15 -0.2 
FT 9 -0.15 0.15 -0.2 
SCALE 0 
CRLINE123 
C R L N 2 3 4  
cRLINE345 
CRLINE452 
CRLINE567 
CRLINE678 
CRLINE 7 8 9 
CRLINE896 
CRLLNE926 
CRLINE 10 3 7 
CRLINE 11 4 8 
CRLINE 12 5 9 
CT 100.064 1 2  3 4 0  
CT200.0642 106 110 1 
C T 3 0 0 . 0 6 4 6 7 8 5 0 1  
CT400.064498 120 1 
CT500.064 1 1 0 5 9 0  1 
CT600.0643 11 7 120 1 
R G 1 1 1 0  
R G 2 1 2 0  
R G 3 1 3 0  
R G 4 1 4 0  
RG5 1 5 0  
R G 6 1 6 0  
PH 1 RG 1 0.06 0.0001 1 
MA-PH 1 1 1 
P R G 1 1 1 1 1 4  
NMERGE 
NCOMPRESS 
NTCR1111 
NPCR2221 
NJCR333 1 
QCR444 1 

Table 1.2 Listing of &ure3.in 

figure3,MOD 
figure3 .out 
0.3,0.3 
0.2 

“ Input file with node and element information” 
“ Output file with RCS as a function of look angle” 
“ x- and y- dimensions normalized with wavelength of rectangular cavity 
length of cavity normalized with respect to wavelength 
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1 
10 
10 
0 
o.,o. 
1 .,o 
30. frequency in GHz 
(l.,O.),(l.,O.) complex relative permittivity and permeability of medium inside cavity 

integer flag to consider higher order modes in the cavity 
number of TE modes to be considered 
number of TM modes to be considered 
alpha = 0 for H-polarization 
theta and phi incident angles in degrees 
increment in theta and phi in degrees 

Table 1.3 Listing of &we3.out 

X-dimension of WG = 0.3000000 wavelength 
Y-dimension of WG = 0.3000000 wavelength 
Length of WG cavity = 0.2000000 wavelength 

20 
Number of Nodes Used = 128 
Number of Elements Used = 
Number of nonboundary edges = 
Number of nonboundary edges (aperture) = 65 
Frequency in Ghz = 30.00000 
alphatheta Phi cross-pol(RCS)co-pol(RCS ) 

Number of waveguide modes = 

252 
378 

0.0. 0. -42.90524 0.1645633 
0.1 .oooooo 0. -42.87325 0.1629779 
0.2.000000 0. -42.85700 0.1584223 
0.3.000000 0. -42.85587 0.1508932 
0.4.000000 0. -42.86822 0.140369 1 
0.5.000000 0. -42.89356 0.1268443 
0.6.oooO00 0. -42.93044 0.1 1029 18 
0.7.000000 0. -42.97783 9.067788OE-02 
0.8.000000 0. -43.03438 6.7987286E-02 
0.9.Oooo00 0. -43.09773 4.2 179674E-02 
0.10.00000 0. -43.1657 1 1.3209 175E-02 
********** *** ******** ************ 
********** *** ******** ************ 
0.17 1 .OOOO 0. -49.14130 -0.9871500 
0.172.0000 0. -49.60229 -0.9702910 
0.173.0000 0. -50.03440 -0.9554753 
0.174.0000 0. -50.42996 -0.9426595 
0.175.0000 0. -50.78228 -0.93 18268 
0.176.0000 0. -5 1.08 1 17 -0.9229562 
0.177.0000 0. -5 1.32377 -0.9 160256 
0.178.0000 0. -51.50285 -0.9110218 
0.179.0000 0. -5 1.6 1285 -0.9079247 
0.180.0000 0. -5 1.65466 -0.906749 1 
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3.2 EXAMPLE 2 

A rectangular cavity embedded in a metal cube as shown in figure 4 is considered as a second 
example. The *.SES, *. in, and *. out files used to for the problem are shown in Tables 2.1,2.2, 
and 2.3. 

Table 2.1 Listing of & u r e 4 . ~ ~  

C" 
C* COSMOSM Geostar V1.70 
C* Problem : figur4 
C" 
PLANEZ01 
VIEW0010 
PT 1 -0.25 -0.25 0 
PT. 2 0.25 -0.25 0 

Date : 1-11-95 Time : 10:25:41 

PT 3 0.25 0.25 0 

SCALE 0 
PT 4 -0.25 0.25 0 

PT 5 -0.25 -0.25 -0.5 
PT 6 0.25 -0.25 -0.5 
PT 7 0.25 0.25 -0.5 
PT 8 -0.25 0.25 -0.5 
PT 9 -0.15 -0.15 0 
PT 10 0.15 -0.15 0 
PT 11 0.15 0.15 0 
PT 12 -0.15 0.15 0 
VIEW1110 
SCALE 0 
cRLINE112 
CFiLlNE223 
cRLINE334 
CRLINE441 
CRLINE556 
CRLINE667 
C K I N E 7 7 8  
CRLINE885 
CRLINE9 1 5  
CRLINE 10 2 6 
CRLINE 11 3 7 
CRLINE1248 
CRLINE 13 9 10 
CRLINE 14 10 11 
C R L m  15 11 12 
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CRLINE 16 12 9 
CLS 1 
CT 100.07 4 1 2  3 4 0  
CT200.074 13 14 15 160 
R G 1 2 1 2 0  
R G 2 1 2 0  
CT300.0742 106 11 0 1 
RG3 1 3 0  
CT400.0743 11 7 120 1 
R G 4 1 4 0  
CT500.074498 1201 
R G 5 1 5 0  
CT600.074 1 1 0 5 9 0  1 
RG6 1 6 0  
CT700 .074567801  
R G 7 1 7 0  
PH 1 RG 1 0.07 0.0001 1 
MA-PH 1 1 1 
PRG212114  
NTCR 13 1 13 1 
NPCR 14 2 14 1 
NJCR 15 3 15 1 
QCR 164 16 1 

Table 2.2 Listing of &ured.in 

figure4.MOD I‘ Input file with node and element information” 
figure4.out “ Output file with RCS as a function of look angle” 
0.3,0.3 “ x- and y- dimensions normalized with wavelength of rectangular cavity 
0.2 length of cavity normalized with respect to wavelength 
1 integer flag to consider higher order modes in the cavity 
30 number of TE modes to be considered 
30 number of TM modes to be considered 
0 alpha = 0  for H-polarization 
o.,o. theta and phi incident angles in degrees 
1 .,o increment in theta and phi in degrees 
30. frequency in GHz 
(1 .,O.),( 1 .,O.) complex relative permittivity and permeability of medium inside cavity 

Table 2.3 Listing of &ure4.out 

X-dimension of WG = 0.300oooO wavelength 
Y-dimension of WG = 0.3000000 wavelength 
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Length of WG cavity = 0.2oooO00 wavelength 
Number of waveguide modes = 60 
Number of Nodes Used = 152 
Number of Elements Used = 
Frequency in Ghz = 30.00000 

300 

alpha 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
- 
- 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

22 

theta 
0. 

1 . 0 0 m  
2.000000 
3.000000 
4.000000 
5.000000 
6.000000 
7.000000 
8.000000 
9 . o o m  
1 0,00000 
1 1 .00000 
12.00000 
13.00000 
14.00000 
15.00000 
16.000OO 
17.00000 
18.00000 
19.00000 
20.00000 
2 1 .00000 
22.00000 
23.00000 
24.00000 
25.00000 
- - - - - - - 
------- 
170.0000 
17 1 .0000 
172.0000 
173.0000 
174.0OOO 
175.oooO 
176.0000 
177.0000 
178.0000 
179.0000 
180.0000 

Phi 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

cross-pol 
- 13.86164 
- 13.86652 
- 13.8779 1 
-13.89583 
-13.92023 
- 13.95 116 
-13.98853 
- 14.03238 
- 14.08267 
- 14.13940 
-14.20255 
-14.27210 
-14.34806 
- 14.43036 
- 14.5 1905 
- 14.6 1407 
-14.71538 
-14.82301 
-14.93689 
-15.05705 
-15.18342 
- 15.3 1600 
- 1 5.45476 
-15.59963 
- 15.75065 
-15.90774 

eo-pol 
3.597274 
3.586681 
3.557459 
3.5096 18 
3 .443209 
3.358291 
3.25496 1 
3.133344 
2.993612 
2.836054 
2.660966 
2.468850 
2.260279 
2.036047 
1.797 124 
1.544816 
1.280692 
1.006683 

0.725 1824 
0.4389912 
0.15 14 122 
-0.1337813 
-0.4 124082 
-0.6800060 
-0.93 1953 1 
-1.16381 1 

-- ------- -------- 
0. -32.80526 2.489367 
0. -32.59278 2.690944 
0. -32.40409 2.870220 
0. -32.23733 3.027478 
0. -32.09236 3.163024 
0. -3 1.97046 3.277061 
0. -31.86998 3.369819 
0. -31.79082 3.441491 
0. -3 1.734 13 3.492200 
0. -31.69735 3.522068 
0. -31.68309 3.531136 



3.3 Example 3 
In this example a rectangular aperture backed by a rectangular cavity placed at the one end of a 
finite circular cylinder as shown in figure 5 is considered. *. SES, *. in, and *. out files used for 
this problem are shown in Tables 3.1,3.2, and 3.3, respectively. 

Table 3.1 Listing of&rd .m 

C* 
C* COSMOSM Geostar V1.70 
C* Problem : figure5 
C* 
C* FILE temp1.SES 1 1 1 1 
PLANEZO 1 
VIEW00 1 0  
PT 1 0 0 0  
PT 2 0.35 0.35 0 
SCALE 0 
CRPCIRC 1 1 2 0.494975 360 4 
SCALE 0 
SCALE 0 

Date : 1-25-95 Time : 15:52:43 

PT 6 0 0 -0.5 
PT 7 0.35 0.35 -0.5 
SCALE 0 
VIEW1110 
CRPCIRC 5 6 7 0.494975 360 4 
PT 11 -0.15 -0.15 0 
PT 12 0.15 -0.15 0 
PT 13 0.15 0.15 0 

CRLINE927 
CRLINE 10 3 8 
CRLINE 11 4 9 
CRLINE 12 5 10 
CRLINE 13 11 12 
CRLINE 14 12 13 
CRLINE 15 13 14 
CRLINE 16 14 11 
CRLINE 17 12 5 
CRLINE 18 13 2 
CRLINE 19 14 3 
CRLINE 20 11 4 

PT 14 -0.15 0.15 0 
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SF4CR 1 3 17 13 20 0 
SF4CR 2 17 4 18 14 0 
SF4CR 3 18 1 19 15 0 
SF4CR 4 19 2 20 16 0 
SF4CR 5 13 14 15 16 0 
SF4CR6 1 9 5  100 
SF4CR71061120 
SF4CR 8 11 3 12 7 0 
SF4CR9 1 2 8 9 4 0  
SF4CR 10 5 6 7  8 0 
PH 1 SF 1 0.1 0.0001 1 
MA-PH 1 1 1 
NTCR 13 1 13 1 
NPCR 14 2 14 1 
NJCR 15 3 15 1 
QCR 164 16 1 
PSF 5 1 5 1 1 1 4  
NMERGE 1 831 1 O.OOO10 1 0  
NCOMPRESS 1 831 

Table 3.2 Listing of &preGn 

figure5.MOD “ Input file with node and element information” 
figure5.out “ Output file with RCS as a function of look angle” 
0.3,0.3 “ x- and y- dimensions normalized with wavelength of rectangular cavity 
0.2 length of cavity normalized with respect to wavelength 
1 integer flag to consider higher order modes in the cavity 
10 number of TE modes to be considered 
10 number of TM modes to be considered 
0 alpha = 0 for H-polarization ( for E-polarization alpha =90) 
o.,o. theta and phi incident angles in degrees 
1.,0 increment in theta and phi in degrees 
30. frequency in GHz 
(1 .,O.),( 1 .,O.) complex relative permittivity and permeability of medium inside cavity 

Table 3.3 Listing of@ref;.out 

X-dimension of WG = 0.3000000 wavelength 
Y-dimension of WG = 0.3000000 wavelength 
Length of WG cavity = 0.2000000 wavelength 

20 
Number of Nodes Used = 83 1 
Number of Elements Used = 
Frequency in Ghz = 30.00000 

Number of waveguide modes = 

1658 
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alpha theta phi cross-pol co-pol 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
-- 
-- 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

0. 
1 .000000 
2.000000 
3.000000 
4 . m 0 0  
5.000000 
6.oooO00 
7.000000 
8 . m o o  
9.000000 
10.00000 
1 1 .00000 
12.00000 
13.00000 
- - - - - - - 
- - - - - - 
169.0000 
170.oooO 
17 1 .OOOO 
172.0000 
173.0000 
174.00OO 
175.oooO 
176.0000 
177.0000 
178.0000 
179.0000 
18O.oooo 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

-- ---. 

-5.9 16269 
-5.9205 16 
-5.933593 
-5.955378 
-5.98592 1 
-6.025254 
-6.073274 
-6.12997 1 
-6.1953 18 
-6.269305 
-6.351826 
-6.442932 
-6.542520 
-6.650455 

----- - - - - - - - 
-- ------- --_---- 

0. -33.84848 
0. -33.33032 
0. -32.86591 
0. -32.45417 
0. -32.09342 
0. -31.78228 
0. -31.52011 
0. -31.30555 
0. -31.13779 
0. -31.01659 
0. -30.94126 
0. -30.91166 

9.834730 
9.820421 
9.778456 
9.709249 
9.613455 
9.492058 
9.346359 
9.177999 
8.988997 
8.781787 
8.559145 
8.3 24296 
8.080740 
7.832253 

7.762480 
8.084915 
8.3 82092 
8.652040 
8.893 197 
9.104296 
9.284355 
9.432592 
9.548450 
9.63 1517 
9.68 15 16 
9.698285 

3.4 Example 4 
A rectangular aperture backed by a rectangular cavity and placed over the curved surface of a 
finite circular cylinder as shown in figure 6 is considered. *. SES, *. in, and *. out files used in 
this case are shown in Tables 4.1,4.2, and 4.2, respectively. 

Table 4.1 Listing of&m6.S= 

C" 
C* COSMOSM Geostar V1.70 
C* Problem : figure6 Date : 1-26-95 Time : 8: 10: 19 
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C* 
C* FILE temp1.SES 1 1 1 1 
PLANEZO 1 
VIEW0010 
PTlOOO 
PT 2 -0.35 -0.1505 0 
PT 3 0.35 -0.1505 0 
PT 4 0.35 0.1505 0 
PT 5 -0.35 0.1505 0 
PT 6 -0.35 -0.1505 0.1 
PT 7 0.35 -0.1505 0.1 
PT 8 0.35 0.1505 0.1 
PT 9 -0.35 0.1505 0.1 
SCALE 0 
VIEW1110 
PT 10 -0.35 0 -0.38 
SCALE 0 
PLANEXO 1 
CRPCIRC 1 10 9 0.503041 34.82 1 
CRPCIRC 2 10 6 0.503041 55.18 1 
CRPCIRC 3 10 11 0.503041 270 3 
SCALE 0 
PT 14 -0.5 0 -0.38 
PT 15 -0.5 0.1505 0.1 
PT 16 -0.5 -0.1505 0.1 
CRPCIRC 6 14 15 0.503041 34.82 1 
CRPCIRC 7 14 16 0.503041 55.18 1 
CRPCIRC 8 14 17 0.503041 270 3 
CT100 .1556789100  
R G 1 1 1 0  
CRLINE 11 15 9 
CRLINE 12 16 6 
CRLINE 13 17 11 
CRLINE 14 18 12 
CRLINE 15 19 13 
SF4CR 1 6  12 1 11 0 
SF4CR 2 12 7 13 2 0 
SF4CR 3 13 3 14 8 0 
SF4CR41441590 
SF4CR5 15 10 11 5 0 
CRLINE 16 9 5 
CRLINE 17 5 2 
CRLINE 18 6 2 
SF4CR 6 1 18 17 16 0 
CRLINE 19 9 8 
CRLINE 20 5 4 
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C R L M 2 1 8 4  
SF4CR 7 16 19 21 20 0 
CRLINE 22 8 7 
CRLINE 23 4 3 
C R L N  24 7 3 
PT 20 0.35 0 -0.38 
PLANEX01 
CRPCIRC 27 20 8 0.503041 34.82 1 
SF4CR 8 27 24 23 21 0 
C R L M  25 6 7 
CRLINE 26 2 3 
SF4CR 9 18 26 24 25 0 
SF4CR 10 17 20 23 26 0 
CRPCIRC 28 20 7 0.503041 55.18 1 
CRPCIRC 29 20 21 0.503041 270 3 
CRLINE 32 9 6 

PT 25 0.5 0.1505 0.1 
PT 26 0.5 -0.1505 0.1 
PLANEXO 1 
CRPCIRC 37 24 25 0.503041 34.82 1 
CRPCIRC 38 24 26 0.503041 55.18 1 
CRPCIRC 39 24 27 0.503041 270 3 
CT 2 0 0.15 5 37 38 39 40 41 0 
R G 2 1 2 0  
CRLINE 42 8 25 
CRLINE 43 7 26 
SF4CR 13 42 37 43 27 0 
CRLINE44 21 27 
SF4CR 14 43 38 44 28 0 
CRLINE 45 22 28 
SF4CR 15 29 44 39 45 0 
CRLINE 46 23 29 
SF4CR 16 45 40 46 30 0 
SF4CR 17 46 41 42 31 0 
cRLINE47 11 21 
CLS 1 
SF4CR 18 2 47 28 25 0 
CRLINE48 12 22 
SF4CR 19 3 47 29 48 0 

SF4CR 20 4 48 30 49 0 
SF4CR 21 5 49 31 19 0 
PH 1 SF 1 0.1 0.0001 1 
CLS 1 
MA-PH 1 1 1 

PT 24 0.5 0 -0.38 

cmm 49 13 23 
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v E w 0 0 1 0  
VIEW1110 
PSF 10 1 10 1 1 1 4  
CLS 1 
CLS 1 
NTCR26 126 1 
NPCR 23 2 23 1 
NJCR 20 3 20 1 
QCR 174 17 1 
CLS 1 

Table 4.2 Listing of f iure6. i~~ 

figure6.MOD 
figure6.out 
0.7,0.3 1 
0.1 
1 
30 
30 
0 
o.,o. 
1 .,o 
30. 
(1 .,O.),(l.,OJ 

“ Input file with node and element information” 
“ Output file with RCS as a function of look angle” 
“ x- and y- dimensions normalized with wavelength of rectangular cavity 
length of cavity normalized with respect to wavelength 
integer flag to consider higher order modes in the cavity 
number of TE modes to be considered 
number of TM modes to be considered 
alpha = 0 for H-polarization ( for E-polarization alpha =90) 
theta and phi incident angles in degrees 
increment in theta and phi in degrees 
frequency in GHz 
complex relative permittivity and permeability of medium inside cavity 

Table 4.3 Listing of &ure6.out 

X-dimension of WG = 0.7oooO00 wavelength 
Y-dimension of WG = 0.3 100OOO wavelength 
Length of WG cavity = 0.1000000 wavelength 
Number of waveguide modes = 60 
Number of Nodes Used = 552 
Number of Elements Used = 
Frequency in Ghz = 30.00000 

1100 

alpha theta phi cross-pol co-pol 

0. 0. 0. -5.933923 6.34727 1 
0. 1.000000 0. -5.935130 6.339834 
0. 2.000000 0. -5.946536 6.312681 
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0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
-- 
-- 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

3 .m 
4.000000 
5.000000 
6.000000 
7.000000 
8.000000 
9.000000 
10.00000 
------- 
- - - - - - - 
174.oooO 
175.0000 
176.oooO 
177.0000 
178 .WOO 
179.0000 
180.0000 

0. -5.968001 6.266007 
0. -5.999329 6.200232 
0. -6.0405 10 6.115752 
0. -6.09 1329 6.0 13002 
0. -6.151697 5.892314 
0. -6.221767 5.753819 
0. -6.301365 5.597322 
0. -6.390241 5.422188 

-- ------- -------- 
-- ------ -------- 

0. -58.31413 4.871758 
0. -57.79329 5.028406 
0. -57.26915 5.159277 
0. -56.59153 5.262630 
0. -55.61058 5.337103 
0. -54.31091 5.381660 
0. -52.79220 5.395699 

3.5 Example 5 
In this example a rectangular aperture by backed by a rectangular cavity and placed dong the 
circumference of a finite conducting circular cylinder, as shown in figure 7 is considered. *.SES, 
*. in, and *. out files used to run this case are shown in Tables 5.1,5.2, and 5.3, respectively. 

Table 5.1 Listing of&ure7..SZS 

C* 
C* COSMOSN Geostar V1.70 
C* Problem : figure7 
C* 
C* F?LE figure7.SES 1 1 1 1 
PLANEZO 1 
VIEW 0 0 1 0 
PTlOOO 
PT 2 -0.1505 -0.35 0 
PT 3 0.1505 -0.35 0 

Date : 1-30-95 Time : 11:33:48 

PT 4 0.1505 0.35 0 
PT 5 -0.1505 0.35 0 
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PT 6 -0.1505 -0.35 0.1 
PT 7 0.1505 -0.35 0.1 
PT 8 0.1505 0.35 0.1 
PT 9 -0.1505 0.35 0.1 
PT 10 -0.1505 0 -0.25 
SCALE 0 
VIEW1110 
PLANEX01 
CRPCIRC 1 10 9 0.494975 90 1 
CRPCIRC 2 10 6 0.494975 270 3 
SCALE 0 
PT 13 -0.1505 0 -0.25 
PT 13 -0.5 0 -0.25 
PT 14 -0.5 0.35 0.1 
PT 15 -0.5 -0.35 0.1 
CRPCIRC 5 13 14 0.494975 90 1 
CRPCIRC 6 13 15 0.494975 270 3 
SCALE 0 
CT 100.1 4 5  6 7  8 0  
R G l l l O  
CRLINE 10 15 6 
CRLINE 11 14 9 
SF4CR11115100 
CRLINE 12 16 11 
SF4CR 2 10 2 12 6 0 
CRLINE 13 17 12 
SF4CR 3 12 3 13 7 0 
SF4CR4 134 11 8 0  
CRLINE 14 9 5 
CRLINE 15 6 2 
CRLINE 16 2 5 
CRLINE 17 5 4 
CRLINE 18 4 3 
CFUNE 19 3 2 
CRLINE 20 8 4 
CRLINE 21 7 3 

CRPCIRC 22 18 8 0.494975 90 1 
CRPCIRC 23 18 7 0.494975 270 3 
CRLINE 26 9 8 
CRLINE27 1220 
SF4CR 5 26 25 27 4 0 
CRLINE 28 11 19 
SF4CR 6 27 24 28 3 0 
CRLINE 29 6 7 
SF4CR 7 28 23 29 2 0 

PT 18 0.1505 0 -0.25 
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SF4CR9 1 14 16 15 0 
SF4CR 10 26 20 17 14 0 
SF4CR 11 22 21 18 20 0 
SF4CR 12 29 21 19 15 0 
SF4CR 13 16 19 18 17 0 

PT 22 0.5 0.35 0.1 

SCALE 0 
CRPCIRC 30 21 22 0.494975 90 1 
CRPCIRC 3 1 2 1 23 0.494975 270 3 
CT 2 0 0.1 4 30 31 32 33 0 
R G 2 1 2 0  
CRLINE 34 8 22 
CRLINE 35 7 23 
SF4CR 14 34 30 35 22 0 
CRLINE 36 19 24 
SF4CR 15 35 31 36 23 0 
CRLINE 37 20 25 
SF4CR 16 36 32 37 24 0 
SF4CR 17 37 33 34 25 0 
PH 1 SF 10.1 0.0001 1 
CLS 1 
MA-PH 1 1 1 
CLS 1 
PSF 13 1 13 1 1 1 4  
NTCR 19 1 19 1 
NPCR 18 2 18 1 
NJCR 17 3 17 1 
QCR 164 16 1 

Table 5.2 Listing of figuTe7.in 

PT 21 0.5 0 -0.25 

PT 23 0.5 -0.35 0.1 

figure7.MOD 
figure7.0~ 
0.3 1,0.7 
0.1 
1 
30 
30 
0 
o.,o. 
1 .,o 
30. 
(1 .,0.),(1$.) 

" Input file with node and element information7' 
" Output file with RCS as a function of look angle" 
" x- and y- dimensions normalized with wavelength of rectangular cavity 
length of cavity normalized with respect to wavelength 
integer flag to consider higher order modes in the cavity 
number of TE modes to be considered 
number of TM modes to be considered 
alpha = 0 for H-polarization ( for E-polarization alpha =90) 
theta and phi incident angles in degrees 
increment in theta and phi in degrees 
frequency in GHz 
complex relative permittivity and permeability of medium inside cavity 
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Table 5.3 Listing of&urei'.out 

X-dimension of WG = 0.3 1000000 wavelength 
Y-dimension of WG = 0.700000 wavelength 
Length of WG cavity = O.1oooOOO wavelength 
Number of waveguide modes = 60 
Number of Nodes Used = 550 
Number of Elements Used = 
Frequency in Ghz = 30.00000 

1096 

alpha 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
-- 
-- 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

theta 

0. 
1 .oooooo 
2.000000 
3.000000 
4.000000 
5 .OOOOOO 
6.000000 
7.000000 
8.000000 
9.000000 
10.00000 
11 .00000 
12.00000 
13.00000 
-------- 
-------- 
172.0000 
173 .OOOO 
174.0000 
175.0000 
176.0000 
177.0000 
178.0000 
179.0000 
180.0000 

phi cross-pol 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

-14.81105 
-14.86441 
-14.92570 
- 14.99266 
- 15.06429 
-15.13739 
-15.21013 
- 15.28020 
-1 5.34564 
-15.40529 
- 15.45568 
- 15.49823 
- 15.53 147 
- 15.55477 

-- 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

.-------- 
-35.59557 
-35.00657 
-34.46977 
-33.97979 
-33.539 17 
-33.14160 
-32.78939 
-32.47799 
-32.20755 

co-pol 

6.143041 
6.12502 1 
6.073569 
5.989009 
5.871937 
5.723056 
5.543458 
5.334379 
5.097300 
4.833958 
4.546342 
4.236658 
3.9073 34 
3.560932 

-------- 
-------- 

4.24 1209 
4.387676 
4.5 16529 
4.6273 16 
4.719339 
4.79 1856 
4.844146 
4.875624 
4.885905 

32 



4. NUMERICAL RESULTS 

To validate the present analysis and computer code, various numerical examples are 

considered. For validation, the numerical results obtained by ME-MOM are compared with 

results obtained by the hybrid Finite Element Method and Method of Moments ( FEM-MOM ) 

method. In the EM-MOM method, EM fields inside the cavity are obtained using the Finite 

Element Method and the fields outside the cavity are obtained using the Method of Moments. 

The unknown fields are obtained by subjecting the total electric fields to appropriate boundary 

conditions. The results obtained by ME-MOM are also compared with the pure MOM approach. 

In the pure MOM approach, the inner wall of cavity along with the outer surface of the conducting 

body is considered as one closed 3D conducting surface. The Electric Field Integral Equation 

(Em) with electric surface current density as unknown is then obtained by subjecting the total 

tangential electric field on the entire closed surface to zero. The electric surface current density 

obtained after solving the EFlE is then used to determine scattering pattern of cavity backed 

aperture recessed in a 3D conducting body. 

As a first example, the radar cross section of a rectangular cavity, as shown in figure 

3, with dimensions a= 0.3 h 0, b=0.3h oand c = 0.2h 0 is calculated. The cavity is assumed to be 

open at the z = 0 plane. For the numerical solution of equation (23), the infinite summations with 

respect to index p must be truncated to some finite number P , where P is the number of modes 

considered in ascending order of their cutoff frequencies. Numerical convergence of matrix 

equation (23) depends upon the choices of values of M , N ,  and P . For numerical convergence, 

sufficiently large values of M ,  N ,  and P must be selected. For M = 42 , N = 252, and 

P = 20, the Radar Cross Section (RCS) of the rectangular cavity is calculated and presented in 

figure 3 along with the results obtained from the hybrid FEM-MOM. Further increases in values 
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A4 , N , and P were found to result in very insignificant changes in the RCS. The numerical 

results obtained using both methods agree very well verifying the validity of the combined field 

integral equation approach presented in this paper. 

A second example considered for validation of the present approach is a rectangular 

cavity embedded in a solid conducting cubical box as shown in figure 4. The cavity dimensions 

are the same as described in figure 3. The cubical box with sides equal to 0.5 h is considered. 

For N = 300 , M = 42 , and P = 60,  the RCS pattern of the cavity embedded in a cubical solid 

box is calculated and presented in figure 4 along with the numerical results obtained using the 

pure MOM approach. In the pure MOM approach, the cubical box with the inner surface of 

cavity was considered as a closed conducting surface. From the plots in figure 4, it may be 

concluded that the results obtained by both methods agree well. 

The present approach is also used to predict monostatic RCS’s of cavities embedded 

in a finite metallic circular cylinder. In figure 5, a monostatic pattern of a rectangular cavity with 

dimensions a = 0.3h, b = 0.3h , and c = 0.2h, which is embedded in one of the ends of the 

finite circular cylinder, is presented. The finite metallic cylinder is of length L = lh  and 

diameter r = 0.5h. The monostatic pattern of the cavity is also calculated using the pure MOM 

approach and is presented in figure 5. The results obtained by both methods agree well. 

To demonstrate the application of the present approach to a cavity backed aperture 

mounted on curve surfaces, a rectangular cavity with x width equal to 0.7h, y width equal to 

0.3 1 h , and z depth equal to 0.21 embedded in the finite metallic cylinder as shown in figure 6 is 

considered. To be able to match the cavity modal fields with electromagnetic fields outside the 

cavity across the cavity aperture, the aperture surface must be planar and normal to z-axis. 

However, for the example shown in figure 6 the aperture plane is not planar. To avoid this 
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difficulty for apertures on curve surfaces, the equivalent cavity aperture which is a little inside 

the curved surface is considered for matching fields across the cavity aperture. For the example 

under consideration, the cavity aperture at z = -0.1 h is considered. The monostatic pattern of 

the cavity mounted on cylindrical surface calculated using the present method and the pure MOM 

method is shown in figure 6. There is good agreement between the two results. 

Monostatic patterns of a rectangular cavity with longer dimension along the 

circumferential direction of a finite metallic cylinder are calculated using the present method 

and the pure MOM technique. The results are presented in figure 7. For these results, a 

rectangular cavity with x width equal to 0.31h , y width equal to 0.73L, and z depth equal to 

0.2h embedded in a finite metallic cylinder of length L equal to 1 .Oh and the diameter r equal to 

0.5% was considered. The results obtained by both methods agree well with little disagreement 

near broad side angles. 

5. CONCLUSION 

The problem of electromagnetic scattering from a cavity backed aperture recessed in a 

3D conducting body has been analyzed using the combined field integral equation approach. The 

EM fields outside the cavity are obtained in terms of the free space Green’s function and electric 

and magnetic surface current densities present on the surface of conducting bodies including the 

aperture. The EM fields inside the cavity are obatined in terms of cavity modal functions. The 

combined field integral equations are then derived by subjecting the electric and magnetic fields 

to appropriate boundary conditions. Using the Method of Moments, the integral equations are 

solved for unknown surface current densities. The scattering characteristic of the cavity backed 

aperture is then determined from the surface current densities. The numerical results obtained by 
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the present method are compared with the numerical results obtained by FEM-MOM and the pure 

MOM methods. The computed results for the rectangualr cavities considered in this paper agree 

well with the results obtained by the hybrid FEM-MOM and the pure MOM methods. The 

limitation of the present method is that it can be used to analyze regularly shaped cavities filled 

with homogeneous material. 
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Figure 1 An open ended rectangular cavity recessed in a 3D conducting surface 
and illuminated by a plane wave. 
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Figure 2 Equivalent electric and magnetic surface currents 
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Figure 3 Backscatter RCS patterns for a rectangular cavity as shown with dimensions 
a=0.3 h , b= 0.3 h , e= 0.2 h without a ground plane for E- and H- polarized 
incident plane wave. Solid and hollow triangles indicate numerical data 
obtained using EM-MOM 
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Figure 5 Backscatter RCS pattern of rectangular cavity with a= 0.3 h, b = 0.3 h, and 
c = 0.2 h embedded in a conducting circular cylinder as shown with L =0.5 3 
and r = 0.5 h. 
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Figure 6 Backscatter RCS pattern of rectangular cavity with x width = 0.7 h, y width 
0.31 A, and depth = 0.2 A, embedded in a conducting circular cylinder with L 
= 1 A, r = 0.5 A. 
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Figure 7 Backscatter RCS pattern of rectangular cavity with x width = 0.31 h, 
width =0.7h, and depth = 0.2 h embedded in a conducting circular cyLder 
with L = 1.0h and r = 0.5h. 
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